p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.4C4, C22⋊2M4(2), (C2×C8)⋊7C22, C4.67(C2×D4), C22⋊C8⋊11C2, (C2×C4).117D4, (C23×C4).7C2, (C2×M4(2))⋊6C2, (C22×C4).13C4, C23.29(C2×C4), C2.6(C2×M4(2)), C4.23(C22⋊C4), (C2×C4).145C23, (C22×C4).92C22, C22.41(C22×C4), C22.16(C22⋊C4), (C2×C4).71(C2×C4), C2.10(C2×C22⋊C4), SmallGroup(64,88)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.4C4
G = < a,b,c,d,e | a2=b2=c2=d2=1, e4=d, ab=ba, eae-1=ac=ca, ad=da, bc=cb, ebe-1=bd=db, cd=dc, ce=ec, de=ed >
Subgroups: 145 in 95 conjugacy classes, 45 normal (11 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C24, C22⋊C8, C2×M4(2), C23×C4, C24.4C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, M4(2), C22×C4, C2×D4, C2×C22⋊C4, C2×M4(2), C24.4C4
Character table of C24.4C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | i | i | -i | i | -i | -i | i | linear of order 4 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | -i | -i | -i | i | i | i | i | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | i | -i | -i | i | -i | i | i | -i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | i | i | i | i | -i | -i | -i | -i | linear of order 4 |
ρ13 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | i | -i | i | -i | -i | i | -i | i | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -i | i | -i | i | i | -i | i | -i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ17 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 2i | 2i | -2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 2i | 2i | -2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ23 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | -2i | -2i | 2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | -2i | -2i | 2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ26 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ27 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ28 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
(1 5)(2 16)(3 7)(4 10)(6 12)(8 14)(9 13)(11 15)
(1 15)(2 12)(3 9)(4 14)(5 11)(6 16)(7 13)(8 10)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
G:=sub<Sym(16)| (1,5)(2,16)(3,7)(4,10)(6,12)(8,14)(9,13)(11,15), (1,15)(2,12)(3,9)(4,14)(5,11)(6,16)(7,13)(8,10), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)>;
G:=Group( (1,5)(2,16)(3,7)(4,10)(6,12)(8,14)(9,13)(11,15), (1,15)(2,12)(3,9)(4,14)(5,11)(6,16)(7,13)(8,10), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16) );
G=PermutationGroup([[(1,5),(2,16),(3,7),(4,10),(6,12),(8,14),(9,13),(11,15)], [(1,15),(2,12),(3,9),(4,14),(5,11),(6,16),(7,13),(8,10)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)]])
G:=TransitiveGroup(16,95);
C24.4C4 is a maximal subgroup of
C24.46D4 C24.2Q8 C24.48D4 C24.3Q8 C23.C42 C23.8C42 C24.C8 C25.3C4 C23⋊C8⋊C2 C24.(C2×C4) C24.45(C2×C4) C24.150D4 C24.54D4 C24.55D4 C24.56D4 C24.57D4 C24.58D4 C25.C4 C4.C22≀C2 (C23×C4).C4 C24.66D4 C24.19Q8 C24.9Q8 (C22×C4).275D4 (C22×C4).276D4 C24.70D4 C24.10Q8 (C2×C8)⋊D4 (C2×C4)≀C2 C42⋊7D4 M4(2)⋊20D4 M4(2).45D4 C42⋊2D4 C24.11Q8 C24.73(C2×C4) D4○(C22⋊C8) C42.259C23 C42.262C23 C42.264C23 C42.265C23 D4×M4(2) C23⋊3M4(2) C42.297C23 C42.299C23 C24.177D4 C24.178D4 C24.104D4 C24.105D4 C24.106D4 C24.183D4 C24.116D4 C24.117D4 C24.118D4 C24.125D4 C24.126D4 C24.127D4 C24.128D4 C24.129D4 C24.130D4 A4⋊M4(2)
D2p⋊M4(2): D4⋊7M4(2) D6⋊M4(2) D6⋊6M4(2) D10⋊7M4(2) D10⋊8M4(2) D10⋊9M4(2) D10⋊10M4(2) D14⋊M4(2) ...
(C2×C2p)⋊M4(2): (C2×C4)⋊M4(2) C23⋊M4(2) C42.677C23 C42.693C23 C24.6Dic3 C24.4Dic5 C24.4F5 C24.4Dic7 ...
C24.4C4 is a maximal quotient of
C25.3C4 C42.42D4 C42.43D4 C42.44D4 Q8⋊M4(2) C42.374D4 Q8⋊5M4(2) C42.378D4 C24⋊3C8 C42.425D4 C23.32M4(2) C42.109D4 C42.120D4
D2p⋊M4(2): D4⋊M4(2) D4⋊4M4(2) D4⋊5M4(2) D6⋊M4(2) D6⋊6M4(2) D10⋊7M4(2) D10⋊8M4(2) D10⋊9M4(2) ...
(C2×C2p)⋊M4(2): (C2×C4)⋊M4(2) C23⋊M4(2) C23.28C42 C23⋊2M4(2) C24.6Dic3 C24.4Dic5 C24.4F5 C24.4Dic7 ...
Matrix representation of C24.4C4 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
13 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
13 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
13 | 15 | 0 | 0 |
10 | 4 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 4 | 0 |
G:=sub<GL(4,GF(17))| [1,13,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[1,13,0,0,0,16,0,0,0,0,16,0,0,0,0,1],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[13,10,0,0,15,4,0,0,0,0,0,4,0,0,1,0] >;
C24.4C4 in GAP, Magma, Sage, TeX
C_2^4._4C_4
% in TeX
G:=Group("C2^4.4C4");
// GroupNames label
G:=SmallGroup(64,88);
// by ID
G=gap.SmallGroup(64,88);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,650,88]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=1,e^4=d,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=b*d=d*b,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations
Export